Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate

Identifieur interne : 000142 ( PascalFrancis/Corpus ); précédent : 000141; suivant : 000143

Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate

Auteurs : Paul Ginoux ; Larry W. Horowitz ; V. Ramaswamy ; Igor V. Geogdzhayev ; Brent N. Holben ; Georgiy Stenchikov ; XUEXI TIE

Source :

RBID : Pascal:07-0068470

Descripteurs français

English descriptors

Abstract

[1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 D22
A08 01  1  ENG  @1 Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate
A11 01  1    @1 GINOUX (Paul)
A11 02  1    @1 HOROWITZ (Larry W.)
A11 03  1    @1 RAMASWAMY (V.)
A11 04  1    @1 GEOGDZHAYEV (Igor V.)
A11 05  1    @1 HOLBEN (Brent N.)
A11 06  1    @1 STENCHIKOV (Georgiy)
A11 07  1    @1 XUEXI TIE
A14 01      @1 NOAA Geophysical Fluid Dynamics Laboratory @2 Princeton, New Jersey @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies @2 New York, New York @3 USA @Z 4 aut.
A14 03      @1 NASA Goddard Space Flight Center @2 Greenbelt, Maryland @3 USA @Z 5 aut.
A14 04      @1 Department of Environmental Sciences, Rutgers-The State University of New Jersey @2 New Brunswick, New Jersey @3 USA @Z 6 aut.
A14 05      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 7 aut.
A20       @2 D22210.1-D22210.21
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000145308520290
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 07-0068470
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Aérosol @5 01
C03 01  2  ENG  @0 aerosols @5 01
C03 01  2  SPA  @0 Aerosol @5 01
C03 02  X  FRE  @0 Epaisseur optique @5 02
C03 02  X  ENG  @0 Optical thickness @5 02
C03 02  X  SPA  @0 Espesor óptico @5 02
C03 03  3  FRE  @0 Dynamique fluide géophysique @5 03
C03 03  3  ENG  @0 Geophysical fluid dynamics @5 03
C03 04  3  FRE  @0 Modèle climat @5 04
C03 04  3  ENG  @0 Climate models @5 04
C03 05  2  FRE  @0 Climat @5 05
C03 05  2  ENG  @0 climate @5 05
C03 05  2  SPA  @0 Clima @5 05
C03 06  2  FRE  @0 Résistance mécanique @5 06
C03 06  2  ENG  @0 strength @5 06
C03 06  2  SPA  @0 Resistencia mecánica @5 06
C03 07  2  FRE  @0 Concentration @5 07
C03 07  2  ENG  @0 concentration @5 07
C03 07  2  SPA  @0 Concentración @5 07
C03 08  2  FRE  @0 Sulfate @5 08
C03 08  2  ENG  @0 sulfates @5 08
C03 08  2  SPA  @0 Sulfato @5 08
C03 09  2  FRE  @0 Carbone organique @5 09
C03 09  2  ENG  @0 organic carbon @5 09
C03 09  2  SPA  @0 Carbono orgánico @5 09
C03 10  X  FRE  @0 Suie @5 10
C03 10  X  ENG  @0 Soot @5 10
C03 10  X  SPA  @0 Hollín @5 10
C03 11  2  FRE  @0 Poussière @5 11
C03 11  2  ENG  @0 dust @5 11
C03 11  2  SPA  @0 Polvo @5 11
C03 12  X  FRE  @0 Sel marin @5 12
C03 12  X  ENG  @0 Sea salt @5 12
C03 12  X  SPA  @0 Sal marina @5 12
C03 13  2  FRE  @0 Aluminium @5 13
C03 13  2  ENG  @0 aluminum @5 13
C03 13  2  SPA  @0 Aluminio @5 13
C03 14  X  FRE  @0 Humidité relative @5 14
C03 14  X  ENG  @0 Relative humidity @5 14
C03 14  X  SPA  @0 Humedad relativa @5 14
C03 15  2  FRE  @0 Extinction @5 15
C03 15  2  ENG  @0 extinction @5 15
C03 15  2  SPA  @0 Extinción @5 15
C03 16  X  FRE  @0 Long terme @5 16
C03 16  X  ENG  @0 Long term @5 16
C03 16  X  SPA  @0 Largo plazo @5 16
C03 17  2  FRE  @0 Télédétection @5 17
C03 17  2  ENG  @0 remote sensing @5 17
C03 17  2  SPA  @0 Detección a distancia @5 17
C03 18  X  FRE  @0 Modélisation @5 18
C03 18  X  ENG  @0 Modeling @5 18
C03 18  X  SPA  @0 Modelización @5 18
C03 19  2  FRE  @0 Satellite @5 19
C03 19  2  ENG  @0 satellites @5 19
C03 19  2  SPA  @0 Satélite @5 19
C03 20  2  FRE  @0 Monde @5 20
C03 20  2  ENG  @0 global @5 20
C03 20  2  SPA  @0 Mundo @5 20
C03 21  X  FRE  @0 Echelon régional @5 21
C03 21  X  ENG  @0 Regional scope @5 21
C03 21  X  SPA  @0 Escala regional @5 21
C03 22  X  FRE  @0 Feu végétation @5 22
C03 22  X  ENG  @0 Vegetation fire @5 22
C03 22  X  SPA  @0 Fuego vegetación @5 22
C03 23  2  FRE  @0 Océan Antarctique @5 23
C03 23  2  ENG  @0 Antarctic Ocean @5 23
C03 24  2  FRE  @0 Croissance @5 24
C03 24  2  ENG  @0 growth @5 24
C03 25  2  FRE  @0 Propriété optique @5 25
C03 25  2  ENG  @0 optical properties @5 25
C03 25  2  SPA  @0 Propiedad óptica @5 25
C03 26  2  FRE  @0 Etats Unis @2 NG @5 61
C03 26  2  ENG  @0 United States @2 NG @5 61
C03 26  2  SPA  @0 Estados Unidos @2 NG @5 61
C03 27  2  FRE  @0 Mers Antarctiques @5 62
C03 27  2  ENG  @0 Antarctic Seas @5 62
C03 27  2  SPA  @0 Mares antárticos @5 62
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
N21       @1 043
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0068470 INIST
ET : Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate
AU : GINOUX (Paul); HOROWITZ (Larry W.); RAMASWAMY (V.); GEOGDZHAYEV (Igor V.); HOLBEN (Brent N.); STENCHIKOV (Georgiy); XUEXI TIE
AF : NOAA Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies/New York, New York/Etats-Unis (4 aut.); NASA Goddard Space Flight Center/Greenbelt, Maryland/Etats-Unis (5 aut.); Department of Environmental Sciences, Rutgers-The State University of New Jersey/New Brunswick, New Jersey/Etats-Unis (6 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (7 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D22; D22210.1-D22210.21; Bibl. 1 p.1/4
LA : Anglais
EA : [1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.
CC : 220; 001E; 001E01
FD : Aérosol; Epaisseur optique; Dynamique fluide géophysique; Modèle climat; Climat; Résistance mécanique; Concentration; Sulfate; Carbone organique; Suie; Poussière; Sel marin; Aluminium; Humidité relative; Extinction; Long terme; Télédétection; Modélisation; Satellite; Monde; Echelon régional; Feu végétation; Océan Antarctique; Croissance; Propriété optique; Etats Unis; Mers Antarctiques
FG : Amérique du Nord
ED : aerosols; Optical thickness; Geophysical fluid dynamics; Climate models; climate; strength; concentration; sulfates; organic carbon; Soot; dust; Sea salt; aluminum; Relative humidity; extinction; Long term; remote sensing; Modeling; satellites; global; Regional scope; Vegetation fire; Antarctic Ocean; growth; optical properties; United States; Antarctic Seas
EG : North America
SD : Aerosol; Espesor óptico; Clima; Resistencia mecánica; Concentración; Sulfato; Carbono orgánico; Hollín; Polvo; Sal marina; Aluminio; Humedad relativa; Extinción; Largo plazo; Detección a distancia; Modelización; Satélite; Mundo; Escala regional; Fuego vegetación; Propiedad óptica; Estados Unidos; Mares antárticos
LO : INIST-3144.354000145308520290
ID : 07-0068470

Links to Exploration step

Pascal:07-0068470

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate</title>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geogdzhayev, Igor V" sort="Geogdzhayev, Igor V" uniqKey="Geogdzhayev I" first="Igor V." last="Geogdzhayev">Igor V. Geogdzhayev</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holben, Brent N" sort="Holben, Brent N" uniqKey="Holben B" first="Brent N." last="Holben">Brent N. Holben</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stenchikov, Georgiy" sort="Stenchikov, Georgiy" uniqKey="Stenchikov G" first="Georgiy" last="Stenchikov">Georgiy Stenchikov</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Environmental Sciences, Rutgers-The State University of New Jersey</s1>
<s2>New Brunswick, New Jersey</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="05">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0068470</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 07-0068470 INIST</idno>
<idno type="RBID">Pascal:07-0068470</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000142</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate</title>
<author>
<name sortKey="Ginoux, Paul" sort="Ginoux, Paul" uniqKey="Ginoux P" first="Paul" last="Ginoux">Paul Ginoux</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horowitz, Larry W" sort="Horowitz, Larry W" uniqKey="Horowitz L" first="Larry W." last="Horowitz">Larry W. Horowitz</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ramaswamy, V" sort="Ramaswamy, V" uniqKey="Ramaswamy V" first="V." last="Ramaswamy">V. Ramaswamy</name>
<affiliation>
<inist:fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Geogdzhayev, Igor V" sort="Geogdzhayev, Igor V" uniqKey="Geogdzhayev I" first="Igor V." last="Geogdzhayev">Igor V. Geogdzhayev</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Holben, Brent N" sort="Holben, Brent N" uniqKey="Holben B" first="Brent N." last="Holben">Brent N. Holben</name>
<affiliation>
<inist:fA14 i1="03">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Stenchikov, Georgiy" sort="Stenchikov, Georgiy" uniqKey="Stenchikov G" first="Georgiy" last="Stenchikov">Georgiy Stenchikov</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Environmental Sciences, Rutgers-The State University of New Jersey</s1>
<s2>New Brunswick, New Jersey</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xuexi Tie" sort="Xuexi Tie" uniqKey="Xuexi Tie" last="Xuexi Tie">XUEXI TIE</name>
<affiliation>
<inist:fA14 i1="05">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antarctic Ocean</term>
<term>Antarctic Seas</term>
<term>Climate models</term>
<term>Geophysical fluid dynamics</term>
<term>Long term</term>
<term>Modeling</term>
<term>Optical thickness</term>
<term>Regional scope</term>
<term>Relative humidity</term>
<term>Sea salt</term>
<term>Soot</term>
<term>United States</term>
<term>Vegetation fire</term>
<term>aerosols</term>
<term>aluminum</term>
<term>climate</term>
<term>concentration</term>
<term>dust</term>
<term>extinction</term>
<term>global</term>
<term>growth</term>
<term>optical properties</term>
<term>organic carbon</term>
<term>remote sensing</term>
<term>satellites</term>
<term>strength</term>
<term>sulfates</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Aérosol</term>
<term>Epaisseur optique</term>
<term>Dynamique fluide géophysique</term>
<term>Modèle climat</term>
<term>Climat</term>
<term>Résistance mécanique</term>
<term>Concentration</term>
<term>Sulfate</term>
<term>Carbone organique</term>
<term>Suie</term>
<term>Poussière</term>
<term>Sel marin</term>
<term>Aluminium</term>
<term>Humidité relative</term>
<term>Extinction</term>
<term>Long terme</term>
<term>Télédétection</term>
<term>Modélisation</term>
<term>Satellite</term>
<term>Monde</term>
<term>Echelon régional</term>
<term>Feu végétation</term>
<term>Océan Antarctique</term>
<term>Croissance</term>
<term>Propriété optique</term>
<term>Etats Unis</term>
<term>Mers Antarctiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>D22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GINOUX (Paul)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HOROWITZ (Larry W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RAMASWAMY (V.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GEOGDZHAYEV (Igor V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HOLBEN (Brent N.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>STENCHIKOV (Georgiy)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XUEXI TIE</s1>
</fA11>
<fA14 i1="01">
<s1>NOAA Geophysical Fluid Dynamics Laboratory</s1>
<s2>Princeton, New Jersey</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies</s1>
<s2>New York, New York</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Environmental Sciences, Rutgers-The State University of New Jersey</s1>
<s2>New Brunswick, New Jersey</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s2>D22210.1-D22210.21</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000145308520290</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0068470</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur optique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Optical thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor óptico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dynamique fluide géophysique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Geophysical fluid dynamics</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle climat</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Climate models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Climat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>climate</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Clima</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Résistance mécanique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>strength</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Resistencia mecánica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>concentration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Sulfate</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>sulfates</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Sulfato</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Carbone organique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>organic carbon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Carbono orgánico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Suie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Soot</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Hollín</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Poussière</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>dust</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Polvo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Sel marin</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sea salt</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Sal marina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Aluminium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>aluminum</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Aluminio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Humidité relative</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Relative humidity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Humedad relativa</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Extinction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>extinction</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Extinción</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Long terme</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Long term</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Largo plazo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Télédétection</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>remote sensing</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Detección a distancia</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Satellite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>satellites</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Satélite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Monde</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>global</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Echelon régional</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Regional scope</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Escala regional</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Feu végétation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Vegetation fire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Fuego vegetación</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Océan Antarctique</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>Antarctic Ocean</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Croissance</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>growth</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Propriété optique</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>optical properties</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Propiedad óptica</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="27" i2="2" l="FRE">
<s0>Mers Antarctiques</s0>
<s5>62</s5>
</fC03>
<fC03 i1="27" i2="2" l="ENG">
<s0>Antarctic Seas</s0>
<s5>62</s5>
</fC03>
<fC03 i1="27" i2="2" l="SPA">
<s0>Mares antárticos</s0>
<s5>62</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fN21>
<s1>043</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0068470 INIST</NO>
<ET>Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate</ET>
<AU>GINOUX (Paul); HOROWITZ (Larry W.); RAMASWAMY (V.); GEOGDZHAYEV (Igor V.); HOLBEN (Brent N.); STENCHIKOV (Georgiy); XUEXI TIE</AU>
<AF>NOAA Geophysical Fluid Dynamics Laboratory/Princeton, New Jersey/Etats-Unis (1 aut., 2 aut., 3 aut.); Department of Applied Physics and Applied Mathematics, Columbia University and NASA Goddard Institute for Space Studies/New York, New York/Etats-Unis (4 aut.); NASA Goddard Space Flight Center/Greenbelt, Maryland/Etats-Unis (5 aut.); Department of Environmental Sciences, Rutgers-The State University of New Jersey/New Brunswick, New Jersey/Etats-Unis (6 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (7 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D22; D22210.1-D22210.21; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[1] This study evaluates the strengths and weaknesses of aerosol distributions and optical depths that are used to force the GFDL coupled climate model CM2.1. The concentrations of sulfate, organic carbon, black carbon, and dust are simulated using the MOZART model (Horowitz, 2006), while sea-salt concentrations are obtained from a previous study by Haywood et al. (1999). These aerosol distributions and precalculated relative-humidity-dependent specific extinction are utilized in the CM2.1 radiative scheme to calculate the aerosol optical depth. Our evaluation of the mean values (1996-2000) of simulated aerosols is based on comparisons with long-term mean climatological data from ground-based and remote sensing observations as well as previous modeling studies. Overall, the predicted concentrations of aerosol are within a factor 2 of the observed values and have a tendency to be overestimated. Comparison with satellite data shows an agreement within 10% of global mean optical depth. This agreement masks regional differences of opposite signs in the optical depth. Essentially, the excessive optical depth from sulfate aerosols compensates for the underestimated contribution from organic and sea-salt aerosols. The largest discrepancies are over the northeastern United States (predicted optical depths are too high) and over biomass burning regions and southern oceans (predicted optical depths are too low). This analysis indicates that the aerosol properties are very sensitive to humidity, and major improvements could be achieved by properly taking into account their hygroscopic growth together with corresponding modifications of their optical properties.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Aérosol; Epaisseur optique; Dynamique fluide géophysique; Modèle climat; Climat; Résistance mécanique; Concentration; Sulfate; Carbone organique; Suie; Poussière; Sel marin; Aluminium; Humidité relative; Extinction; Long terme; Télédétection; Modélisation; Satellite; Monde; Echelon régional; Feu végétation; Océan Antarctique; Croissance; Propriété optique; Etats Unis; Mers Antarctiques</FD>
<FG>Amérique du Nord</FG>
<ED>aerosols; Optical thickness; Geophysical fluid dynamics; Climate models; climate; strength; concentration; sulfates; organic carbon; Soot; dust; Sea salt; aluminum; Relative humidity; extinction; Long term; remote sensing; Modeling; satellites; global; Regional scope; Vegetation fire; Antarctic Ocean; growth; optical properties; United States; Antarctic Seas</ED>
<EG>North America</EG>
<SD>Aerosol; Espesor óptico; Clima; Resistencia mecánica; Concentración; Sulfato; Carbono orgánico; Hollín; Polvo; Sal marina; Aluminio; Humedad relativa; Extinción; Largo plazo; Detección a distancia; Modelización; Satélite; Mundo; Escala regional; Fuego vegetación; Propiedad óptica; Estados Unidos; Mares antárticos</SD>
<LO>INIST-3144.354000145308520290</LO>
<ID>07-0068470</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000142 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000142 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0068470
   |texte=   Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023